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An account is given of the theory of e las to-plas t ic  problems in soil mechanics.  Solution by the method 
of successive approximations combined with a network method is described. 

Deformat ions  in foundation soils are now found by applying the theory of l inear deformations, which is valid only 
for a l inear stress-strain relationship.  

Experimental investigation of the deformation properties of various soils indicates that the dependence of strain on 
stress is general ly  nonlinear [1-3]. Elastic deformation is always accompanied by plastic deformation, which often ex-  
ceeds the former by a factor of ten.  

Accordingly,  the deformations of foundation soils should, in general,  be found by applying the eJasto-plast ic,  not 
the l inear theory.  

t propose to use the theory of small  e las to-plas t ic  deformations to determine the deformations of morainic founda- 
tion soils due to external  loading. 

According to this theory, the method of solution of such problems reduces to the simultaneous examinat ion of the 
s ta t ical  and physical equations, the geometr ical  relationships, the expressions for stress and strain intensity, and the de-  
pendence of strain on stress. Thus, in solving problems in the theory of plast ici ty,  at every point of the deformed body 
it is necessary to satisfy 18 equations, besides the boundary equations [4]. 

II 'yushin [5] has developed a special  method, cal led the "method of elast ic  solutions, " for solving problems involv-  
ing the theory of small  e las to-plas t ic  deformations; it allows the plastic problem to be reduced to the successive solution 
of equations analogous to the Lamg equations in e las t ic i ty  theory,  with given boundary conditions. The solution of these 
equations, while fulfi l l ing the boundary conditions, is very difficult ,  however.  Therefore, in integrating the analogous 

equations in e las t ic i ty  problems it is usual to employ the reverse method, assigning the displacements,  as functions of the 
coordinates of the point, and on the basis of the boundary conditions determining the external  forces acting at the surface 
of the body which the given displacements satisfy, The Saint-Venant  method can also be used. In this case only part of 
the external  forces and part of the displacements are assigned, and the remaining factors are found from the Lamg equa-  
tions and the boundary conditions.  Both these methods of solving elast ic  problems are inappl icable  to the solution of 
problems of plast ici ty  by the method of elast ic  solutions. 

A simpler method of solving problems of plast ici ty is, I think, solution by the method of finite differences [6]. Es- 
sential ly,  this replaces the part ia l  differential  equations by part ial  difference equations, while the operator expressions 
l inear with respect to derivatives correspond to expressions l inear with respect to differences. As a result, the part ial  dif-  
ferent ial  equations are replaced by a system of l inear a lgebraic  equations, in which the unknowns are values of the func- 

t ion at the  nodes of the assumed type of network, the number of unknowns depending on the number of in termedia te  nodes 

of the network approximating the region being studied. 

Equations of the Lamg type,  which describe the e]as to-plas t ic  deformation of soils without taking volume forces 
into account,  may be represented for points i, j, k (Fig.  1) in f ini te  differences as follows: 
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Values for the second and third equations of (1) may be obtained from the rule of circular permutat ion.  At any 
point of the elasto-plast ic  region, in the solution by the method of elastic solutions the relation between stress component 
and strain components is expressed by 
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Equations (2) are valid not only for internal points in the region examined,  but also for edge points, the stress com-  
ponents at the edges necessarily conforming to the given boundary conditions. Equations (2) may be written in finite dif- 
ferences for points i, j, k (Fig.  2, a, b) as follows = 
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Fig. I. 

For points at the edge of the region examined,  both equations (8) and the surface conditions must be satisfied: 
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Fig.  2, Network for stress Components at the  edges: 

a - for points loca ted  on plane xoz, b - on plane yoz 
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where 
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The v a h e s  of exnressions R and R may be determined 
r -~v zv 

from the rule of  circular  permutat ion.  Therefore, equating 

(a) to surface conditions (4), we obtain a new system of equa- 
tions, relat ing the  internal  stresses in the region examined 

with the edge conditions.  

In solving e las to-p las t ic  problems by the method of 
e las t ic  solutions, we assume co = 0 in the first approximation,  
i . e . ,  we have the ordinary problem of the theory of e las t ic i ty ,  

the solution of which, for given boundary conditions, may be 

obtained in closed form. 

To solve e las to-p las t ic  problems in the second approxi-  

mation,  it is first necessary to express the displacements of 
edge points of the network region in terms of displacements 

of the internal  points adjacent  to the  edges and the boundary 
conditions, i . e . ,  to include the unknown edge displacements 

in the overal l  i terat ion procedure.  
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We shall assume that at the surface of an elasto-plastic half-space a local load acts; this load can be resolved into 
a normal load @ and tangential  components r~ rr Bounding the half-space by planes, and applying along these 
planes normal and tangential  loads, corresponding to the internal stresses at the same points of the half-space, calcu-  

lated from (4), we obtain the basic calculation scheme (Fig. 3). Fig. 3 shows the upper boundary points of the basic 
calculation scheme, and the internal network nodes adjacent to them. Loads acting along the edges of the network 
region are reduced to uniformly distributed loads relative to the edge node points of the network. 
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Fig. 3. Upper part of basic calculat ion scheme. 

To construct the equations relating edge stresses to dis- 
placements of the edge points and displacements of the adjacent 
internal points (equations (3)), it is necessary to work around the 
network region systematically. The displacements of the corner 

points of the network region are expressed by the disp!acements 
of the adjoining edge points of the network. 

To determine the displacements of the internal points of 
the assumed type of network, it is necessary, for each internal 

node point, to write down expressions in accordance with (1) for 

the components of the displacements as functions of the displace- 

ments of the adjacent points. The displacements of the edge 

points entering into these expressions must be represented as func- 

tions of the displacements of the adjacent internal points of the 
network and of the edge stresses, the edge displacements being 
included in the general i teration process. 

Therefore, the problem of determining the displacements 

of the nodes of the network region reduces to the solution of a 
system of equations which can be represented in the canonical 
form: 

X l a n  q- X~al~ -t- ... @ Xnaln + alp = 0; 

Xlael  dr- Xeae2 q- ... -}- Xnae,~ -}- a2p ---- 0; 

(5) 

In view of the considerable number of unknowns 

in (5), it is recommended that an electronic computer 

be used in the solution. 

In solving problems in sol! mechanics by the method of elastic solutions, sufficient accuracy can be obtained with 

the second approximation, If need be, however, this method may also be used, in conjunction with the network method, 
for solving elasto-plastic problems in the third and subsequent approximations. The method of solution of such problems 

is analogous to the method of solving elasto-plastic problems in the second approximation. 

�9 . . . . .  ~ . . . . . . . . .  �9 . 

Xla,1 + X2a~2 + ... + X,a , , ,  -}-a~p = O. 

NOTATION 

u, v, ~o - displacement components; k - quotient of Lam~'s constants k and G; Ax, Ay, ~z - distances between 

nodes of network: o i - stress intensity; s i - strain intensity; Sm - mean relative elongation; Sx, Sy, Sz - relative elon- 

gations; y v, 7 z, 7zv - relative shears; o x, o v, o z, "rxv, rye,  1"~r ~ - stress components; oy, o v, o~, r,~,, T ~ ,  7 ~ -- 
X ~ X J - -  - -  - -  - -  J _ - " ' J .  ~ 7 ~ ~ . . . .  " "  ~ ~ P 7  " ~  7 ,  ~ . 

components o~ elastic stress; P , P , P - s u r t a c e  loads tor a perfectly ezastic Doay; t ,  m, n -- cosines or angles ee-  
X U  y Y  Z U  

tween corresponding axes and normal to area; aik - coefficients of equations; X i - unknown quantities. 
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